Addition

Foundation Stage 1 Objectives:

Birth -to 11 months - notice changes in number of objects/images, sounds in groups of and up to 3
8-20 months - has some understanding that things exist even when out of sight
16-26 months - Begins to organise and categorise objects -sorting
22-36 months - knows that a group of things changes in quantity when something is added
30-50 months - separates a group of 3 or 4 objects in different ways, beginning to recognise that the total is still the same
In practical activities and discussions begins to use the vocabulary involved in addition

Counting using hands and through movement.
Counting using concrete
objects for 1 to 1 correspondence as well as for grouping and partitioning

Pictorial

I can count ...

Abstract

Writing the digit to represent the quantity

Foundation Stage 2 Objectives:

40-60 months - finds the total number of items in two groups by counting all of them
Early Learning Goal - Children count reliably with numbers from one to 20, place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer
Count on from first group to add two groups of objects

Year 1 Objectives:

- read, write and interpret mathematical statements involving addition (+) and equals (=) signs
- represent and use number bonds and related subtraction facts within 20
- add one-digit and two-digit numbers to 20, including
- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as
- $17=\square$ - 9

| Concrete |
| :--- | :--- | :--- | | Using |
| :--- |
| resources to |
| investigate the |
| creation of |
| numbers up to |
| 20. First steps |
| to bridging. |

Using place value - counting on in ones, using a number line, bead string and 100 square etc.

Progressing onto using knowledge of numbers bonds within 10 when crossing the tens boundary e.g.
$9+5=$
Start with the 9, then add 1 to make 10, then add the remaining 4.

Pictorial \quad Abstract

Drawing images to reflect concrete representations

Start with the larger number and count on.
Writing the number sentences to support the pictorial

$\begin{array}{lllllllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$

Use pictures or a number line. Regroup or partition the smaller number to make 10.

Place the larger number in your head and count on the smaller number to find the answer.
$5+9=14$
$9+1=10$
$10+4=14$

If I have nine, how many more do I need to make 10? How many more do I add on now?
$15+1=16$
$16=15+1$ (commutative law)

Finding missing numbers.		$3+\square=12 \quad \square+6=15$

Year 2 Objectives:

- solve problems with addition:
- using concrete objects and pictorial representations, including those involving numbers, quantities and measures
- applying their increasing knowledge of mental and written methods
- recall and use addition facts to 20 fluently, and derive and use related facts up to 100
- add numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and 1 s
- a two-digit number and 10 s
- 2 two-digit numbers
- adding 3 one-digit numbers
- show that addition of 2 numbers can be done in any order (commutative)
recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems

Concrete	Pictorial	Abstract
$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7 . $+7$ Following on from making 10 , make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
Partitioning both numbers into tens and ones $33+21=54 \quad$ OR $\quad 21+33=54$	Start with the two parts and combine to create the whole (Representing the concrete).	$\begin{aligned} & 33+21= \\ & 30+20=50 \\ & 3+1=4 \\ & 50+4=54 \\ & 33+2 \\ & 30 \quad 3 \end{aligned}$

Year 3 Objectives:

- add numbers mentally, including:
- a three-digit number and 1 s
- a three-digit number and 10s
- a three-digit number and 100 s
- add numbers with up to 3 digits, using formal written methods of column addition
- estimate the answer to a calculation and use inverse operations to check answers
- solve problems, including missing number problems, using number facts, place value, and more complex addition

As children move on to decimals and money, decimal place value counters can be used to support learning.

These informal representations may be used to clarify understanding and can be used alongside number lines. It will also aid fluency in mental calculations.

The bar model can reinforce the concept of part part whole. Find the sum of 136 and 245.

sum
$136+245=381$

Abstract
Expanded formal written method with labelled columns and starting with the ones column, progressing from:

1. No crossing of boundaries
2. Crossing the tens or hundreds boundary in 3 digit number
3. A combination of the above.
$475+267=742$

Progressing on to compact column method.

Year 4 Objectives:

- add numbers with up to 4 digits using the formal written methods of column addition where appropriate
- estimate and use inverse operations to check answers to a calculation
- solve addition two-step problems in contexts, deciding which operations and methods to use and why

Year 5 Objectives:

- add whole numbers with more than 4 digits, including using formal written methods (columnar addition)
- add numbers mentally with increasingly large numbers
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition multi-step problems in contexts, deciding which operations and methods to use and why

Year 6 Objectives:

- perform mental calculations, including with mixed operations and large numbers
- solve addition multi-step problems in contexts, deciding which operations and methods to use and why
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Concrete
 See above for concrete examples to use when beginning addition work to

 emphasise the need to exchange when you make ten and place value understanding.
Pictorial

See above for pictorial images to use when beginning addition work.

Abstract

Pupils to record numbers using commas e.g.
2,598,577

Addition of numbers, not exceeding 10 million.

$+$| 1 | 2 | 6 | 3 | 4 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 8 | 7 | 3 | 5 | 2 |
| 3 | 2 | 2 | 1 | 5 | 4 |
| 1 | 1 | | 1 | | |
| 7 | 3 | 5 | 8 | 4 | 9 |

Addition of numbers with up to 3 decimal places, using 0 as a place holder.

$+$| 1 | \cdot | 8 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | \cdot | 4 | 3 | 3 |
| 2 | \cdot | 0 | 2 | 6 |
| 1 | \cdot | | 1 | |
| 4 | \cdot | 2 | 8 | 0 |

