Multiplication

Foundation Stage 2 Objectives:

- 40-60 months - Finds the total number of items in two groups by counting all of them.
- In practical activities and discussions begins to use the vocabulary involved in multiplication
- Early Learning Goal - They solve problems, including doubling, halving and sharing.
Concrete
Make prints by folding paper in half

Year 1 Objectives:

- solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher
- Non-statutory guidance: Through grouping small quantities, pupils begin to understand: multiplication and doubling numbers and quantities.
- They make connections between arrays, number patterns, and counting in $2 s, 5 s$ and $10 s$.

Concrete	Pictorial	+
Start with doubling using concrete resources	Use diagrams to show doubling.	$2+2=4$
Count in $2 s, 5 s$ and 10s using resources to support	Count in $2 s, 5 s$ and $10 s$ on your hands and recognise the patterns on number lines.	2,4,6 etc.

(

Year 2 Objectives:

Pupils should be taught to:

- Count in steps of 2,3,5 and 10.
- recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (x) and equals ($=$) signs
- show that multiplication of 2 numbers can be done in any order (commutative)
- solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts

Concrete	Pictorial	Abstract
Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s using resources to support	Count in $2 s, 5 s$ and $10 s$ on your hands and recognise the patterns on number lines.	2,4,6 etc.
		$\begin{aligned} & 5+5+5=15 \\ & 3 \times 5=15 \\ & 5 \times 3=15 \\ & \text { (commutativity) } \end{aligned}$ Relate to division facts (once division has been taught): $\begin{aligned} & 15 \div 3=5 \\ & 15 \div 5=3 \end{aligned}$ Variation Ideas: 2×3

Year 3 Objectives:

Pupils should be taught to:

- recall and use multiplication facts for the 3,4 and 8 multiplication tables
- write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving multiplication, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects

Year 4 Objectives:

Pupils should be taught to:

- recall multiplication facts for multiplication tables up to 12×12
- use place value, known and derived facts to multiply mentally, including: multiplying by 0 and 1; multiplying together 3 numbers
- recognise and use factor pairs and commutativity in mental calculations
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by 1 digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects

Concrete	Pictorial	Abstract
See above for arrays to demonstrate commutativity.	'The product of \qquad and \qquad is This can then be simplified to:	ual to the product of \qquad and \qquad . times \qquad is equal to \qquad times \qquad .'
Using partitioning of a factor to support mental approaches with multiplication	Discussion point: Which other ways could you partition the factors? e.g. 4×6 and $4 \times 6 \quad 8 \times 3$ and $8 \times 3 \quad 8 \times 5$ and 8×1 Could also been shown with a numberline	$\begin{aligned} & 8 \times 6= \\ & 5 \times 6=30 \\ & 3 \times 6=18 \\ & 30+18=48 \end{aligned}$

Year 5 Objectives:

Pupils should be taught to:

- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- multiply numbers mentally, drawing upon known facts
- multiply whole numbers and those involving decimals by 10,100 and 1,000

Multiplying 2×2 digit using the expanded

 method.Demonstrate using the grid method 2×2 digit before moving to a more formal method to secure understanding.

x	30	
20		
	600	120
120	24	
	$=720$	
	$=144$	

Extending onto compact multiplication before moving onto 3 and 4 digit numbers $\times 2$ digit.

Progress onto calculations with missing numbers.

\times	3	6	(4×6)
	2	4	
	2	4	
1	2	0	(4×30)
1	2	0	(20×6)
6	0	0	(20×30)
8	6	4	
Leading to:			
x	3	6	
	2	4	
	2		
1	4	4	
1			
7	2	0	
8	6	4	

Year 6 Objectives:

Pupils should be taught to:

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- perform mental calculations, including with mixed operations and large numbers

